113 Class Problems: Direct Products and Sums

- 1. If two groups are isomorphic then both must satisfy exactly the same properties. With this in mind, prove the following:
 - (a) $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/15\mathbb{Z}$.
 - (b) $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/9\mathbb{Z}$.

Hint: Consider the order of elements on both sides.

Solution:

a) $\operatorname{ord}(((1)_3,(1)_5)) = 15$ and $|\mathbb{Z}_{13\mathbb{Z}} \times \mathbb{Z}_{15\mathbb{Z}}| = 15$ $\mathbb{Z}_{1_{3\mathbb{Z}}} \times \mathbb{Z}_{1_{5\mathbb{Z}}}$ cyclic =) $\mathbb{Z}_{1_{3\mathbb{Z}}} \times \mathbb{Z}_{1_{5\mathbb{Z}}} \cong \mathbb{Z}_{1_{15\mathbb{Z}}}$ =) $3([x]_3, [y]_3) = ([o]_3, [o]_3) =) \text{ Ord } (([x]_3, [y])) \leq 3$ 6) $Ord(Ci3_q) = q > 3$ $\mathbb{Z}_{3\mathbb{Z}} \times \mathbb{Z}_{3\mathbb{Z}} \cong \mathbb{Z}_{3^{2}\mathbb{Z}}$ ッ

2. Let G, K be groups. Prove the following:

 $G \times K$ Abelian $\iff G$ and K Abelian.

Solutions:

(=) (et
$$(g_1, k_1), (g_2, k_2) \in G \times K \Rightarrow (g_1, k_1) * (g_2, k_2) = (g_1g_2, k_1k_2)$$

 $G_1 K Abelian \Rightarrow = (g_2g_1, k_2k_1) = (g_2, k_2) * (g_1, k_1)$
(=>) $G_1 K$ isomorphic to subgroups of $G \times K$.
 $G \times K$ Abelian => All subgroups are Abelian => $G_1 K$ Abelian

3. A subgroup H ⊂ G is proper if H ≠ G.
Using question 2, prove that Sym₃ is not a direct sum of two proper subgroups.
Hint: Consider the sizes of proper subgroups.
Solutions:

$$\begin{split} |Sym_3| = 6 & H, K \subset Sym_3 \quad proper Such that \quad Sym_3 = H \oplus K \cong H \times K \\ \Rightarrow \quad |H| = 2, \quad |K| = 3 \quad without \quad loss \; of \; generality \\ z_r & 3 \; prime \; \Rightarrow \quad H \cong \mathbb{Z}/_{2\mathbb{Z}}, \; K \cong \mathbb{Z}/_{3\mathbb{Z}} \; \Rightarrow \; Sym_3 \cong \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}} \\ \Rightarrow \quad Sym_3 \quad Abertian \; . \\ Coubindication, \quad Sym_3 is \quad non-Abertian \; . \end{split}$$

- 4. Let $H_1, H_2 \subset G$ be subgroups such that $G = H_1 \oplus H_2$.
 - (a) Prove that H_1 is a normal subgroup of G.
 - (b) Prove that $G/H_1 \cong H_2$.

Hint: Is there a natural surjective homomorphism from G to H_2 ? Solutions:

$$\begin{array}{cccc} petine & \varphi : & G \longrightarrow H_2 \\ & g \longrightarrow h_2 \\ & \mu_1 & = h_1 \not= h_2 & = h_2 \\ & \mu_1 & = h_1 \not= h_2 & \in H_2 \\ \end{array}$$